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Abstract—Anomaly detection in the Internet of Medical Things
(IoMT) is critical for ensuring patient safety and operational
integrity in healthcare systems. This paper proposes a lay-
ered detection framework combining entropy-based features—
including Shannon Entropy and a novel Super Entropy metric—
with supervised and unsupervised learning to identify ransomware
and benign anomalies in a private SpO2 sensor dataset capturing
physiological signals (e.g., heart rate, oxygen saturation) and
device metrics (CPU/RAM usage) under normal, anomalous,
and ransomware scenarios. To address real-world variability,
the dataset includes stealthy and brutal ransomware attacks
alongside benign anomalies. However, due to the sensitive nature
of this private dataset, we complied with strict healthcare data
protection protocols. Our approach introduces a confidence-based
scoring mechanism with delayed alerts to minimize redundancies.
Evaluations of Random Forest, Isolation Forest, Local Outlier
Factor, and One-Class SVM demonstrate that entropy features
consistently enhance performance: Random Forest achieves a
0.937 AUC on full ransomware detection (vs. 0.794 baseline) and
0.959 for brutal attacks (vs. 0.872), underscoring the value of
entropy-aware learning and adaptive alerting for proactive IoMT
security.

Index Terms—Internet of Medical Things (IoMT), Ransomware
Detection, Entropy, Super Entropy, Anomaly Detection, Random
Forest, Brutal Attacks, Stealth Attacks, Alert Scoring System

I. INTRODUCTION

The Internet of Medical Things (IoMT) has transformed
modern healthcare through ubiquitous, real-time patient moni-
toring via interconnected devices such as smart SpO2 sensors,
cardiac monitors, and infusion pumps. While this technological
advancement improves clinical decision-making and outcomes,
it also introduces major cybersecurity risks. One particularly
concerning threat is ransomware, which can encrypt vital
medical data or disrupt device operations—threats that may
directly endanger patient lives when targeting life-supporting
equipment [1].

In recent years, ransomware has evolved beyond basic mass
attacks. Modern variants employ progressive encryption and
sophisticated evasion strategies, such as behavioral camouflage
that mimics legitimate system activities, making them harder
to detect with traditional security mechanisms [2]. As a result,
signature-based detection systems and static rule-based fire-
walls prove increasingly ineffective against these polymorphic
threats [3]. Even advanced Machine Learning models relying
only on system metrics (CPU, memory) often fail to detect

subtle anomalies in resource-constrained IoMT environments
[4].

To overcome these limitations, our research focuses on be-
havioral anomaly detection through information-theoretic anal-
ysis. Prior works have demonstrated that Shannon Entropy is a
valuable metric to detect subtle anomalies in traffic behavior
within IoT networks [5]. Building on this, we propose the
concept of Super Entropy — a refined metric designed to
enhance early-stage detection of cryptographic activity while
minimizing sensitivity to natural fluctuations in IoMT opera-
tions. We propose a multi-layered anomaly detection framework
that integrates entropy-aware features with both supervised
and unsupervised learning models. To minimize false alarms,
we also introduce an adaptive scoring mechanism that trig-
gers alerts only when the prediction confidence surpasses a
calibrated threshold. A built-in suppression window avoids
redundant alerts during prolonged attack phases, making the
system more practical for operational deployment.

To evaluate our framework, we used a comprehensive private
IoMT dataset collected under realistic conditions. The dataset
includes physiological signals (e.g., heart rate, temperature,
SpO2), system-level metrics (CPU, RAM, disk, and network
activity), and entropy features under three conditions: normal
activity, benign anomalies (e.g., software updates), and two ran-
somware behaviors: brutal (aggressive and rapid) and stealthy
variants (slow and concealed). Due to the sensitive nature of the
medical data, this dataset is not publicly released, in accordance
with healthcare data protection principles.

Our results show that entropy-aware features significantly
enhance model performance. For example, entropy integration
improved Random Forest accuracy across both stealthy and
brutal ransomware detection, with substantial AUC gains over
baseline models. These improvements demonstrate the added
value of entropy and adaptive scoring in securing IoMT systems
under real-world conditions.

The main contributions of this work are:
• We use a labeled IoMT dataset capturing normal activity,

benign anomalies, and multiple ransomware strategies
under realistic conditions.

• We introduce Super Entropy—a refined entropy-based
metric to highlight subtle encryption behavior.

• We implement a scoring-based alerting mechanism that
combines prediction confidence with temporal suppression



for realistic anomaly reporting.
• We evaluate both supervised (Random Forest) and unsu-

pervised (Isolation Forest, LOF, One-Class SVM) mod-
els, demonstrating consistent improvements when using
entropy-based features.

These contributions are designed to not only improve technical
detection accuracy, but also ensure operational viability in
clinical environments where false alerts or delays could have
critical consequences for patient care.

The remainder of this paper is structured as follows: Sec-
tion II reviews prior research. Section III details our proposed
architecture. Section IV presents our experimental evaluation.
Finally, Section V discusses our conclusions and future direc-
tions.

II. RELATED WORK

Recent progress in IoMT security has underscored the need
for robust anomaly detection to counter increasingly sophisti-
cated cyber threats. Research has evolved from basic statistical
methods to advanced machine learning (ML) and deep learning
(DL) approaches, each targeting specific challenges in clinical
settings.

Early IoMT anomaly detection often relied on statistical
techniques like moving averages or signal derivatives. For
instance, [6] used handcrafted features—local minima, gradient
shifts, and smoothing filters—to detect pressure-induced fail-
ures in glucose monitoring sensors. While effective in narrow
contexts, such methods struggle with the variability and noise of
real-world environments. Unlike rigid rule-based maintenance,
recent work promotes real-time predictive models leveraging
IoMT data to foresee failures such as CT tube arcing [7].

More recently, machine learning models have shown better
performance, especially in situations with limited labeled data.
For example, Zou et al. [8] proposed an optimized version of
Isolation Forest that achieved high detection accuracy while
maintaining a lightweight footprint, making it suitable for real-
time anomaly detection in resource-constrained environments.
In a similar direction, Liu and colleagues [9] proposed an
unsupervised method for simultaneously detecting anomalies
and change points in time series data with concept drift, which
is particularly relevant for continuous monitoring in wearable
medical devices.

Supervised ML models, such as Random Forest and Support
Vector Machines, have also been widely used, benefiting from
labeled datasets to learn discriminative patterns. Yet, their suc-
cess depends heavily on data quality and class balance, which
are often hard to guarantee in sensitive medical applications.

Deep learning has become a key approach for anomaly
detection in IoMT systems thanks to its ability to model
complex, nonlinear patterns. Transformer-based architectures,
like TiSAT [10], capture long-range dependencies in time
series. CNN-LSTM hybrids with residual blocks and attention
mechanisms, such as in [11], also perform well in multivariate
sensor environments, particularly in demanding industrial con-
texts. Simpler recurrent models like LSTM remain effective
for temporal trends [12], while CNNs extract spatial features

from multivariate inputs [13]. As noted by Briskilla and Ra-
jkumar [14], the complexity of medical time series and real-
time constraints demand detection methods that are not just
accurate, but also efficient and adaptable—especially under
limited supervision or compute resources.

To improve efficiency while preserving accuracy, lightweight
neural architectures or pruning strategies have been proposed.
These methods aim to reduce inference time and memory
consumption, but often at the cost of lower robustness or
interpretability.

Meanwhile, entropy-based detection has gained traction for
identifying ransomware. For instance, Lee et al. [15] proposed
an entropy estimation method for cloud services, achieving
100% detection with zero false positives by leveraging statisti-
cal uniformity in encrypted content. Building on this, a follow-
up study by the same group [16] targeted stealthier ransomware
using format-preserving encryption (FPE). By combining en-
tropy features with lightweight models like KNN and Decision
Trees, they reached an average precision of 94.64%, effectively
addressing advanced evasion strategies.

Other works, such as [17], show that relying solely on
Shannon entropy can cause misclassifications, particularly with
compressed files. Their study of over 50 entropy metrics found
that Chi-square and SP-800 Serial tests offer more reliable
distinctions between encrypted and non-encrypted high-entropy
files. Adaptive detection frameworks now represent the state-
of-the-art. Newaz et al. [18] developed HealthGuard, a machine
learning framework that monitors vital signs in real time
and adapts to evolving threats while preserving patient safety.
Unlike systems using only raw telemetry, Dahmen and Cook
[19] proposed Isudra, an indirectly supervised anomaly detector
that learns from sparse examples to reduce irrelevant alerts.
Their method targets clinically meaningful events, cutting false
positives in smart home health monitoring. Unlike prior work
based on public datasets, our study uses a private dataset from
realistic SpO2-based activity under multiple conditions (normal,
anomalous, and ransomware-induced). This reflects real-world
constraints and the sensitivity of medical data, supporting
robust evaluation of hybrid detection models. Although entropy
analysis and machine learning classifiers each show promise,
few studies have explored their integration in real-time IoMT
settings—especially for stealth ransomware, which can evade
traditional behavior-based filters. Our work contributes to this
growing body of research by proposing a layered detection ar-
chitecture that incorporates both entropy dynamics and adaptive
scoring across supervised and unsupervised machine learning
models.

To our knowledge, no existing work has combined these
elements while addressing both brutal and stealthy ransomware
attacks in a realistic IoMT environment. Our evaluation setup
provides a high level of operational realism, which, to our
knowledge, has not been achieved in prior studies.

III. PROPOSED APPROACH

Our ransomware detection framework for IoMT systems
combines information-theoretic analysis with machine learning



to identify both obvious and stealthy encryption attacks. As
shown in Figure 2, the architecture consists of three core
components: (1) entropy-based feature extraction, (2) hybrid
machine learning detection, and (3) an adaptive scoring mech-
anism for operational deployment.

A. Entropy-Based Feature Engineering

The foundation of our approach lies in information-theoretic
monitoring of system behavior. We employ two complementary
entropy metrics:

• Shannon Entropy (H(X)) quantifies byte-level random-
ness in system files:

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (1)

where p(xi) represents the probability of byte value xi

occurrence. This metric effectively captures the character-
istic entropy surge during file encryption while remaining
computationally lightweight for IoMT devices.

• Super Entropy (S(X)) enhances detection sensitivity
through threshold-based activation:

S(X) =

{
1, if H(X) ≥ τ and ∆H(X) > δ

0, otherwise
(2)

with τ = 7.8 empirically determined to maximize discrim-
ination between cryptographic and benign high-entropy
events (e.g., system updates).

As visualized in Figure 1, these metrics create distinct be-
havioral signatures that differentiate normal operation, benign
anomalies, and ransomware activity.

Fig. 1: Entropy behavior across samples. Green: normal activity.
Red: benign anomalies, stealth, and brutal ransomware attacks.

B. Hybrid Detection Models

We integrate entropy features with conventional system
metrics through a model-agnostic framework supporting both
supervised and unsupervised paradigms:

• Random Forest: Leverages ensemble learning for robust
classification using entropy-augmented feature vectors

• Isolation Forest: Identifies anomalies through recursive
partitioning of the entropy-feature space

• Local Outlier Factor: Detects subtle behavioral deviations
via density-based analysis

• One-Class SVM: Models normal operation boundaries for
unknown-threat detection

All models undergo identical preprocessing including temporal
alignment, min-max normalization, and rolling-window feature
derivation to capture dynamic system states.

C. Adaptive Threat Scoring
To bridge model outputs with clinical operational needs, we

introduce a dynamic scoring layer:

Threat Score =

k∑
i=1

αi · fi + β · I
(
S(X) = 1

)
(3)

where fi represent normalized system features (CPU, memory,
etc.), αi their empirical weights, and β amplifies the Super
Entropy indicator. The scoring mechanism incorporates:

• Confidence-based thresholding to minimize false alerts
• Temporal suppression to prevent alert flooding during

sustained anomalies
• Progressive escalation for persistent threats

This layered design addresses key IoMT constraints:
• Computational efficiency through lightweight entropy

monitoring
• Adaptability via hybrid model support
• Operational practicality with tunable alerting

Fig. 2: Architecture of our proposed ransomware detection
pipeline.

The framework’s modular design permits selective activation
of components based on device capabilities - from basic en-
tropy monitoring on resource-constrained sensors to full model-
scoring deployment on medical gateways. Section IV validates
this flexibility through comprehensive testing across attack
scenarios and hardware profiles.



IV. EXPERIMENTAL RESULTS

A. Dataset and Experimental Setup

We evaluated our framework on a proprietary IoMT dataset
by extracting 50,000 time-series samples from a wider set of
clinical SpO2 monitoring data, collected at 3-second intervals.
The distribution of event types was as follows: 85% normal
behavior, 8% benign anomalies, 4% stealth ransomware, and
3% brutal ransomware. The dataset captures four operational
states (The following sample counts are approximate) :

• Normal activity (42,500 samples): Baseline device opera-
tion during patient monitoring

• Benign anomalies (4,000 samples): System updates, net-
work congestion, and sensor recalibrations

• Ransomware attacks (3,500 samples):
– Stealth variants (2,000 samples): Slow, targeted en-

cryption mimicking system processes
– Brutal variants (1,500 samples): Rapid, indiscriminate

encryption with visible system impact
Table I details the 9-dimensional feature space combining phys-
iological signals and system telemetry. All experiments used
stratified 80/20 train-test splits with 5-fold cross-validation, and
were implemented in Python with scikit-learn module.

TABLE I: Feature space composition for ransomware detection

Feature Clinical/Technical Significance
SpO2 (%) Primary physiological signal (attack disruption indi-

cator)
Heart Rate (BPM) Cardiovascular monitoring metric
Sensor Temp (°C) Device health indicator
CPU/RAM Usage Resource exhaustion patterns
Disk I/O (MB/s) Encryption artifact detection
Network Traffic Command & control communication patterns
Entropy Change Encryption progression metric
Super Entropy Early-stage attack signature

B. Detection Performance Analysis

1) Model Comparison: We evaluated both unsupervised and
supervised approaches using AUC, precision, recall, and F1-
score:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 = 2× Precision × Recall
Precision + Recall

AUC =
∫ 1

0
ROC(t)dt

2) Unsupervised Detection: Table II shows entropy features
provided marginal gains for Isolation Forest (12% AUC in-
crease) but limited value for density-based methods like LOF,
likely due to:

• High-dimensional feature space sparsity
• Entropy’s non-localized impact on distance metrics

TABLE II: Unsupervised detection performance (Global AUC)

Model Baseline Entropy-Aware ∆
Isolation Forest 0.536 0.600 +11.9%
One-Class SVM 0.517 0.525 +1.5%
Local Outlier Factor 0.516 0.504 -2.3%

While overall performance remained modest, the inclusion
of entropy-based features provided some gains in label-free
scenarios.

3) Supervised Learning: Random Forest demonstrated su-
perior performance (Table III), particularly for brutal attacks
where entropy features boosted AUC from 0.872 to 0.959.
The global AUC also improved significantly (from 0.794 to
0.937), confirming the framework’s effectiveness across diverse
ransomware scenarios.

Notable findings:
• Random Forest achieves 95.9% AUC on brutal attacks,

reflecting strong performance against overt ransomware
• Global AUC reaches 0.937, showing strong performance

even when both stealthy and brutal attacks are present
• Entropy-based features significantly reduce stealth-related

false negatives (-38%), enhancing early-stage detection
The difference between the brutal-only and global AUC

scores highlights the difficulty of detecting stealthy ran-
somware. While entropy features improve performance in both
cases, global detection scores are slightly lower due to the
subtlety of stealthy attacks that resemble benign anomalies.

Random Forest consistently outperformed other models. The
addition of entropy-based features led to substantial gains
across all classifiers, demonstrating their usefulness in capturing
both aggressive and concealed ransomware behaviors.

C. Feature Importance

To understand which features contributed most to model
performance, we analyzed the feature importance from the
Random Forest classifier with entropy. As illustrated in Fig-
ure 3, entropy- features, particularly Entropy Change and Super
Entropy, ranked among the top.

Fig. 3: Random Forest feature importance with entropy features.

D. Operational Deployment Results

The scoring system achieved 99.4% precision at 90% confi-
dence threshold, with key operational metrics:

• Mean time-to-detection: 8.2s (brutal), 43.7s (stealth)
• False positive rate: 0.6% (vs. 3.2% in baseline)
• Alert volume reduction: 72% through a cooldown mecha-

nism



TABLE III: Supervised model performance across attack types

Model Global AUC Brutal AUC
Baseline Enhanced Baseline Enhanced

Random Forest 0.794 0.937 0.872 0.959
Gradient Boosting 0.753 0.891 0.833 0.907
Logistic Regression 0.577 0.761 0.626 0.683

(a) Random Forest without entropy (b) Random Forest with entropy (c) ROC curves comparison

Fig. 4: ROC curve analysis showing the impact of entropy features on detection performance

Figures 4a and 4b compare the ROC curves for Random Forest
with and without entropy features. Figure 4c shows a side-
by-side overlay highlighting the improvement in AUC when
entropy is included. ROC analysis (Figures 4a-4c) demonstrates
the framework’s reliable tradeoff between early detection and
false alarms across attack profiles.

E. Entropy Feature Impact

Figure 5 provides a comparative view of AUC scores across
all supervised models. The benefit of including entropy-based
features is clearly visible for each classifier.

Fig. 5: Impact of entropy on AUC scores for all models.

F. Scoring-based Alert System

To ensure practical deployability, we implemented a scoring
mechanism based on Random Forest prediction probabilities.
Alerts are triggered only when the confidence exceeds 90%,

reducing false positives and minimizing alert fatigue in clinical
settings.

The system achieved the following results:
• Total Alerts Triggered: 853
• True Ransomware Attacks Detected: 848
• Precision: 99.4%
A cooldown mechanism was also applied to suppress redun-

dant alerts during ongoing attack phases, further improving alert
quality and system usability.

G. Key Findings

• Entropy Value: Entropy improved brutal attack detection
by 9.9% (AUC) while reducing stealth false negatives by
38%

• Model Selection: Random Forest outperformed alterna-
tives with 0.937 global AUC (0.794 baseline)

• Clinical Relevance: The system distinguished ransomware
from benign anomalies with 94.2% accuracy

• Resource Efficiency: Entire pipeline processes samples in
< 10ms on medical-grade hardware

These results highlight both the technical effectiveness and
practical deployability of our framework in real-world IoMT
environments.

V. CONCLUSION

Our hybrid ransomware detection framework demonstrates
the critical value of entropy-aware behavioral analysis for IoMT
security. The integration of Shannon Entropy with the novel
Super Entropy metric achieved a 93.7% detection rate (AUC)
across all attack types, with particularly strong performance
against brutal ransomware (95.9% AUC). These results validate
that information-theoretic features provide essential signals that



conventional system metrics cannot capture, while remaining
computationally feasible for medical-grade hardware with in-
ference times under 10ms per sample.

Three key findings emerge from this work:
• Entropy dynamics offer early warning signs of encryption

activity, with Super Entropy reducing stealth-related false
negatives by 38%.

• Random Forest consistently outperforms both unsuper-
vised approaches and other supervised models, achieving
up to 0.937 global AUC and 0.959 for brutal ransomware
detection (Table III).

• The adaptive scoring system reduces alert fatigue by 72%
through temporal suppression while preserving detection
sensitivity.

Despite these advances, stealth ransomware remains chal-
lenging, often mimicking benign anomalies like system up-
dates. However, stealth ransomware remains challenging. Fu-
ture work should investigate the following directions:

• Kernel-level I/O profiling: Leveraging IRP-based behav-
ioral features to distinguish ransomware encryption from
benign backup operations, as demonstrated by Ayub et
al. [20]

• Multimodal detection: Combining time-series, protocol-
level, and device-specific features to capture a broader
spectrum of IoMT anomalies, as demonstrated by Chan-
dekar et al. [21]

We identify three promising research directions:
1) Continuous design control: Integrating traceability, risk

management, and compliance reviews within the MLOps
pipeline using design control mechanisms such as pull
requests, as demonstrated by Stirbu et al. [22]

2) Federated personalization: Adopting the FedHealth
framework proposed by Chen et al. [23], which com-
bines federated learning and transfer learning to provide
privacy-preserving yet personalized anomaly detection in
wearable healthcare systems

3) Edge-native modeling: Leveraging lightweight autore-
gressive architectures like VARADE [24] to support low-
latency and energy-efficient anomaly detection directly
on edge devices within clinical environments

These advancements must align with clinical constraints.
In our case, a 90% confidence threshold reduced false alerts
by 81% compared to conventional approaches, demonstrating
that detection performance must be balanced with operational
practicality. The framework’s modular design allows incre-
mental integration of new detection features while preserving
interpretability for healthcare IT teams. Future work may also
include releasing a synthetic or anonymized version of our
dataset to support reproducibility.
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