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Abstract—Ransomware attacks targeting Internet of Medi-
cal Things (IoMT) devices are an escalating threat to mod-
ern healthcare environments, where operational continuity and
patient safety are mission-critical. Existing anomaly detection
approaches—ranging from signature-based techniques to classical
machine learning algorithms—often fall short when confronted
with gradual or concealed attack behaviors. In this paper, we
propose a hybrid detection framework that couples traditional
supervised learning with temporal sequence modeling. Initially, a
machine learning model (Random Forest or XGBoost) is trained
on telemetry data enriched with crafted features such as risk
signal scores and alert amplitudes. The resulting per-sample risk
probabilities are then treated as temporal signals and fed into
a Temporal Convolutional Network (TCN) to capture contextual
progression and subtle threat dynamics. Experiments conducted
on a synthetic IoMT dataset—emulating both rapid-impact and
low-profile ransomware—demonstrate that the proposed approach
achieves 0.9024 accuracy and 0.8441 AUC with XGBoost+TCN,
and 0.9124 accuracy with 0.8223 AUC using Random Forest +
TCN. Both configurations outperform their respective baselines
(XGBoost: 0.8218 accuracy, 0.7509 AUC; Random Forest: 0.8695
accuracy, 0.7574 AUC). These findings confirm that incorpo-
rating temporal modeling of risk scores significantly improves
ransomware detection, while remaining suitable for deployment
in medical-grade environments.

Index Terms—Internet of Medical Things (Io0MT), Ransomware
Detection, Machine Learning Models, Temporal Convolutional
Network (TCN), XGBoost, Random Forest, Hybrid Detection
Framework, Risk Scoring, Time-Aware Analysis, Feature Engi-
neering, Sequence Modeling, Medical Cybersecurity, Anomaly
Detection, Embedded Al

I. INTRODUCTION

The Internet of Medical Things (IoMT) has transformed
modern healthcare by enabling real-time data acquisition from
interconnected medical devices such as infusion pumps, patient
monitors, and diagnostic systems. While this connectivity has
enhanced clinical decision-making and operational efficiency, it
has also introduced new cybersecurity vulnerabilities. Among
them, ransomware attacks are particularly disruptive, with the
potential to encrypt critical patient data or disable safety-critical
systems—directly endangering both care delivery and patient
safety.

Recent ransomware campaigns have shifted from brute-force
infections to more targeted and concealed strategies. These
evolving behaviors include gradual encryption routines, mini-
mal system footprint, and evasive execution, making traditional

detection methods less effective. Within IoMT environments,
this challenge is amplified by several constraints: limited device
computational power, variability in normal telemetry patterns,
and the presence of transient anomalies unrelated to attacks.
Classic signature-based tools and rule-based systems are often
blind to such subtle or evolving threats. Even supervised
machine learning (ML) models, although more adaptive, often
operate on isolated telemetry snapshots and rely on instanta-
neous metrics such as CPU usage or memory load, thereby
overlooking long-term behavioral transitions or multi-step es-
calation patterns.

In this paper, we advocate for a shift toward temporal-aware
detection strategies. We propose a hybrid two-phase architec-
ture that first applies a classical ML classifier (XGBoost or
Random Forest) to assign a probability of maliciousness to each
telemetry instance, based on engineered features including risk
signal score and alert amplitude. These risk probabilities are
then restructured as a time series and processed by a Temporal
Convolutional Network (TCN), a deep learning model well-
suited for extracting temporal dependencies and uncovering
evolving attack signatures. This architecture enables the system
to detect not only abrupt attacks but also progressive malicious
behaviors that manifest across time.

To evaluate our framework, we created a synthetic but real-
istic [oMT telemetry dataset that simulates a BD Alaris™ infu-
sion pump operating under three operational contexts: normal
usage, benign anomalies, and ransomware infection. The benign
anomalies represent non-malicious but irregular system states
(e.g., temporary high disk usage or CPU load due to software
updates or maintenance), which can resemble ransomware-like
behavior and thus pose a detection challenge. Because access
to real medical telemetry is highly restricted due to privacy
and regulatory constraints, simulation-based evaluation is a
common alternative. Following the simulation-based approach
proposed in [1], we designed this dataset to reflect plausible
operational and adversarial profiles of medical devices without
relying on clinical environments. This simulation-based design
enables rigorous testing while preserving patient safety and data
confidentiality.

The main contributions of this paper are as follows:

o We introduce a hybrid detection framework that integrates

supervised ML classification with temporal modeling via



a TCN.

o« We demonstrate that feeding the model-generated per-
sample risk scores into the TCN allows the capture of
temporal threat dynamics beyond what static classifiers
can achieve.

« We validate our approach on a telemetry dataset simulat-
ing realistic IToMT attack conditions, and show improved
performance metrics over baseline classifiers.

The remainder of this paper is organized as follows: section 11
discusses related work on IoMT cybersecurity and time-series
anomaly detection. section III details our detection framework.
section IV presents the evaluation setup and metrics. section V
concludes the paper and outlines future directions.

II. RELATED WORK

The growing sophistication of cyber threats targeting the
IoMT has transformed anomaly detection from a reactive
security task into a critical research problem in proactive threat
modeling. Initial approaches relied heavily on static heuristics,
such as threshold-based filters and handcrafted signal analysis,
to detect unusual device behavior. Statistical tools including
moving averages, gradient shifts, and extrema detection were
applied to biomedical sensors with moderate success [2]. How-
ever, these techniques struggle to detect polymorphic or stealth
ransomware that mimics benign system patterns. Furthermore,
rule-based logic, while interpretable, lacks the adaptability
required to handle dynamic telemetry changes in realistic loMT
deployments [3].

To address these shortcomings, many researchers have turned
to ML models capable of capturing complex decision bound-
aries in high-dimensional, multivariate data. Supervised meth-
ods like Random Forests and Support Vector Machines of-
fer high classification accuracy when trained on well-labeled
datasets, but they are often sensitive to class imbalance, real-
time fluctuations, and the absence of temporal continuity.
Unsupervised strategies, such as Isolation Forest, have proven
more scalable and lightweight. For instance, El Khairi et al. [4]
proposed a contextual system call analysis approach tailored for
anomaly detection in containerized IoT systems. Similarly, Liu
et al. [5] introduced a change-point detection method for non-
stationary medical data, highlighting the importance of tracking
behavioral drift in long-term monitoring. Nevertheless, most of
these approaches operate on static snapshots, which limits their
ability to detect attacks that evolve gradually or span across
time.

To address these temporal limitations, researchers have in-
vestigated sequence-based learning techniques. LSTM networks
and Transformer variants such as TiSAT [6] are effective
at modeling long-term dependencies in sequential data, but
are often constrained by high latency, energy demands, and
memory consumption—factors incompatible with embedded
IoMT environments. CNN-LSTM hybrids [7] provide good
generalization performance on high-frequency data streams, yet
they typically suffer from tuning overhead, lack of interpretabil-
ity, and a heavier inference footprint. In contrast, TCNs offer a
lightweight, parallelizable architecture with competitive results

on time-series data. TCNs have been deployed successfully
in multivariate anomaly detection for IoT [8], semi-supervised
event classification [9], and DDoS mitigation in medical net-
work traffic [10]. Wang et al. [11] extended their use to log-
based detection, while Mulia et al. [12] coupled TCNs with
attention for interpretable time-series modeling.

Entropy-based anomaly detection has also been explored.
Lee et al. [13] proposed an entropy estimation method to
detect malicious file encryption in cloud services, aiming to
prevent the synchronization of ransomware-infected files. While
Davies et al. [14] demonstrated that entropy-based methods can
produce false positives on legitimate high-entropy formats such
as DICOM or HL7, they also showed how combining mul-
tiple entropy tests can improve ransomware detection. These
structural analyses, while orthogonal to telemetry modeling,
offer complementary insights when paired with behavioral
features. Lightweight learning strategies such as model pruning
or distributed learning (e.g., FedHealth [15]) have also been
proposed to support inference on resource-constrained devices,
but often lack the expressiveness to capture escalating threat
patterns.

Probabilistic profiling has been proposed as a complementary
detection layer. The study by [16] explored the idea of modeling
threat behavior through probabilistic code anomaly scoring.
However, this typically occurs at a static code or execution trace
level. In contrast, very few studies have considered the notion
of using ML-generated risk scores—such as per-sample prob-
abilities—as temporal inputs for downstream models. When
probabilistic outputs are used in some traditional models, they
are typically treated as static scalar features embedded in a
larger input vector, thereby discarding their temporal evolution.
Conversely, models like that of Khan et al. [17] leverage RNNs
to maintain sequence awareness, but do not explicitly model the
evolution of risk scores over time.

Hybrid modular designs have been proposed to improve
robustness. For instance, Almotiri [18] proposed a dual-layer
static/dynamic ML pipeline for SD-IoMT infrastructure. Alza-
kari et al. [19] employed attention-based RNNs to detect early-
stage ransomware in traffic flows. Berguiga et al. [20] suggested
a hybrid deep learning model for IoMT threat detection, though
their system lacked inter-sample sequence modeling. While
these architectures represent steps toward multi-phase detection,
they still lack temporal reasoning capabilities over predictive
uncertainty or risk signals produced by upstream classifiers.

To the best of our knowledge, no prior work has proposed a
ransomware detection pipeline that explicitly treats ML-derived
per-sample risk probabilities as a structured time series input
for a Temporal Convolutional Network. Our proposed method
fills this gap by converting predictive outputs from classical
models into sequential inputs, enabling the TCN to learn behav-
ioral transitions and risk accumulation over time. This layered
architecture supports anticipatory threat detection while main-
taining compatibility with real-world IoMT deployments that
are constrained by latency, memory, and power requirements. In
doing so, our approach provides a deployable and interpretable
solution for medical device cybersecurity, and establishes a



foundation for real-time, context-aware ransomware mitigation
in constrained medical environments.

III. PROPOSED APPROACH

Our goal is to construct a ransomware detection framework
capable of capturing both abrupt and stealthy patterns in
telemetry generated by IoMT devices. To this end, we adopt
a modular, two-phase architecture that combines a supervised
ML classifier with a TCN. Figure 1 illustrates the complete
detection pipeline, which unfolds in sequential stages: (A)
Dataset Preparation and Feature Engineering, (B) Risk Proba-
bility Estimation, (C) Time-Series Structuring, (D) TCN-Based
Threat Modeling, and (E) Pipeline Feature Traceability.
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Fig. 1: Proposed Hybrid Detection Pipeline for IoMT Ran-
somware

A. Dataset Preparation and Feature Engineering

We define our dataset D = (x;, yi)f-vzl, where each z; € R
is a telemetry snapshot composed of system metrics extracted
from an IoMT device, and y; € 0, 1 is a binary label indicating
whether the sample is benign or corresponds to ransomware
behavior. The raw features include CPU usage, RAM con-
sumption, and disk I/O levels—standard indicators of system
workload and responsiveness.

To complement these low-level signals, we incorporate two
composite features designed to highlight abnormal behavior
patterns:

« Risk Signal Score: a continuous metric derived to reflect

subtle behavioral deviations over time.

o Alert Amplitude: a feature sensitive to abrupt changes
in system state, often indicative of ransomware-triggered
anomalies.

All features are standardized using z-score normalization:
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where p; and o; represent the empirical mean and standard
deviation of feature j over the training set. This normalization

ensures consistent feature scaling and facilitates effective model
training downstream.

These enriched representations serve as input to the ML-
based classifier and help improve the detection of both rapid
and progressive attack behaviors.

B. Risk Probability Estimation via ML Classifier

We train a supervised ML classifier fyy, such as XGBoost or
Random Forest, on the engineered feature vectors x; € D. The
model outputs a probability score P; indicating the likelihood
of ransomware activity for each input:

Py = fu(x:),

These scores reflect soft confidence levels rather than hard
classifications, and are subsequently used as temporal input
signals in the next modeling phase. This intermediate repre-
sentation enables the system to capture uncertainty and subtle
patterns that may only become meaningful when analyzed
across time.

To mitigate dataset imbalance, particularly the underrepre-
sentation of ransomware events, we apply class-weight scaling
during training:

P; €10,1] 2)
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where Ny and N; denote the number of benign and
ransomware-labeled samples, respectively. This correction en-
sures that the model remains sensitive to rare but high-impact
ransomware indicators during training.
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C. Time-Series Structuring of Risk Scores

The sequence of ML-derived probabilities Py, Ps, ..., Pr
is treated as a univariate time-series signal S, representing
the evolving likelihood of ransomware activity over time. To
prepare this data for sequential modeling, we segment S into
overlapping sliding windows of fixed length w:

X = [Pt7w+l7 Pt7w+2a s

Each window X serves as an input to the temporal model,
with the label y; derived from the ground truth associated
with the most recent element in the window. This formulation
allows the model to learn not just from isolated risk scores, but
from their progression and accumulation across time—key for
detecting stealthy or slowly escalating threats.

) Pt] (4’)

D. Temporal Convolutional Modeling with TCN

The TCN processes each probability window X, to produce
a soft prediction §; (where g; € [0,1] means predicted ran-
somware probability) indicating the likelihood of ransomware
presence:

9yt = TCN(Xy;0) (5)

Here, 6 denotes the learnable parameters of the network. The
TCN architecture is composed of 1D dilated causal convolu-
tions, which ensure that predictions at time ¢ are only influenced



by past values, thus respecting the causal nature of time-series
forecasting. Dilation allows the model to expand its receptive
field without increasing depth, enabling it to learn long-term
dependencies while maintaining computational efficiency.

Training is performed using the binary cross-entropy loss
function:

T

L=—=>"lylog(§) + (1 — i) log(1 — )]

t=1

(6)

We adopt the following hyperparameters in our implementa-
tion:

e input_chunk_length = 12: each input sequence
includes 12 consecutive probability scores.

e output_chunk_length = 4:the model forecasts the
next 4 risk values.

e n_epochs = 8: the model is trained over 8 complete
passes through the dataset.

e dropout = 0.35: dropout is applied between layers to
reduce overfitting.

This configuration strikes a balance between context depth
and runtime efficiency, making the system suitable for resource-
constrained IoMT devices.

E. Pipeline Feature Traceability

To promote transparency and reproducibility, we summarize
in Table I the role of each key feature throughout the pipeline.
This mapping clarifies the origin, transformation, and final
usage of both raw and engineered signals within the detection
architecture.

TABLE I: Traceability of Features Across the Detection
Pipeline

Feature Role in Pipeline

CPU, RAM, Disk I/O
Risk Signal Score
Alert Amplitude

P; (ML probability)
9t (TCN output)

Input features for ML classifier

Augments ML classifier with semantic risk context
Highlights anomaly spikes relevant to ransomware
Structured into sequences for TCN input

Final binary ransomware decision

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed detection
framework on a custom-simulated IoMT telemetry dataset de-
signed to reflect realistic operational and adversarial scenarios.
Our objective is to quantify the added value of temporal model-
ing (via TCN) in enhancing detection performance, especially
under stealth ransomware scenarios.

A. Dataset Description and Preprocessing

Our dataset simulates telemetry from a BD Alaris™ infusion
pump, structured around three behavioral modes: normal, be-
nign anomaly, and ransomware. Normal samples represent rou-
tine device behavior. Benign anomalies include non-malicious
anomalies such as firmware updates or high CPU activity,
while the ransomware category comprises both overt and stealth
variants.

Figure 2 illustrates the distribution of event types.
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Fig. 2: Distribution of behavioral categories in the dataset.

The final dataset includes approximately 50,000 labeled
instances and was split into 80% training and 20% test sets.
All features were normalized using z-score scaling. To miti-
gate class imbalance, we used weighted loss functions during
classifier training.

B. ROC Curve Analysis

To assess the impact of temporal modeling, we first analyze
the ROC curves generated by the baseline and TCN-enhanced
models. Figure 3a shows the ROC curve of the XGBoost
classifier without temporal context. Figure 3b displays the ROC
curve of the same model augmented with TCN-based sequence
modeling. Finally, Figure 3c directly compares both curves to
visualize the improvement in detection performance.

As shown, the TCN-enhanced model achieves a higher true
positive rate across all thresholds, leading to a noticeable gain
in AUC. This confirms that temporal modeling helps capture la-
tent risk escalation and delayed activation patterns—especially
valuable when detecting ransomware variants that evade static
inspection.

C. Model Training and Evaluation Metrics

To highlight the effectiveness of our hybrid framework, we
trained two widely-used classical classifiers—Random Forest
and XGBoost—on the engineered telemetry feature vectors.
These models act as the first stage of our pipeline and produce
a per-sample probability score P;, indicating the likelihood
that a given telemetry snapshot is associated with ransomware
activity.

These outputs serve two distinct purposes:

1) They are directly thresholded (typically at 0.5) to produce

static binary predictions, forming the baseline evaluation.

2) They are restructured as a temporal sequence and passed

into the TCN, enabling dynamic modeling of risk evolu-
tion.

The following evaluation metrics were used to quantify detec-
tion performance:
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Fig. 3: ROC analysis: baseline vs. TCN-enhanced detection.
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Here, TP (True Positives) denotes correctly identified ran-
somware samples, T'N (True Negatives) refers to correctly
identified benign samples, F'P (False Positives) represents
benign samples incorrectly flagged as ransomware, and F'N
(False Negatives) captures missed ransomware detections.

e Accuracy captures the overall correctness of the model
across both classes.

o F1-Score balances precision and recall, making it a crucial
metric in imbalanced settings where ransomware events
are rare.

e AUC (Area Under the ROC Curve) measures the model’s
ability to rank positive samples above negative ones over
varying decision thresholds. A higher AUC indicates better
separability between the two classes.

Table II reports the results across four model configurations:
the two static ML baselines, and their TCN-enhanced coun-
terparts. Notably, both XGBoost and Random Forest achieve
significant improvements when augmented with TCN, particu-
larly in terms of Fl-score, which nearly doubles, highlighting
improved recall and reduced false negatives.

TABLE 1II: Performance Comparison Across Baselines and
TCN-Enhanced Models

Method Accuracy  F1-Score AUC
XGBoost Baseline 0.8218 0.4371 0.7509
Random Forest Baseline 0.8695 0.2939 0.7574
XGBoost + TCN 0.9024 0.6402 0.8441
Random Forest + TCN 0.9124 0.6525 0.8223

D. Classifier-Wise AUC Comparison

To highlight the benefit of temporal modeling across classi-
fiers, we present a comparative AUC barplot in Figure 4. Both
Random Forest and XGBoost show considerable gains when
paired with TCNs.
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Fig. 4: Comparative AUC scores: baseline vs. TCN-enhanced
classifiers.

This comparison confirms that risk probability trajectories,
when modeled temporally, provide complementary signals that
static classifiers fail to leverage.

E. Feature Importance and Interpretation

To better understand the behavior of the ML classifiers, we
analyzed feature importance from the Random Forest model.
As seen in Figure 5, composite features like Alert Amplitude
and Risk Signal Score were ranked highest—confirming their
relevance in identifying ransomware behavior.
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Fig. 5: Random Forest feature importance for ransomware
classification.



FE. Key Observations

o Temporal modeling improves AUC by over 9% for XG-
Boost, and nearly 7% for Random Forest.

This demonstrates that even strong tree-based models
benefit from sequential context, especially when subtle
behavioral transitions occur.

o The TCN-enhanced model exhibits better separation be-
tween benign and malicious sequences across all thresh-
olds.

This is evident in the ROC curves, where the TCN
consistently shifts the decision boundary toward higher
true positive rates.

o Comparative curves indicate higher recall and reduced
false negatives in stealth ransomware cases.

This is critical in clinical environments, where undetected
threats can escalate silently and jeopardize patient safety.

o Performance gains come with minimal computational
overhead, preserving real-time inference viability. The
architecture remains deployable on constrained medical
devices.

V. CONCLUSION

The increasing frequency and sophistication of ransomware
attacks on IoMT devices call for detection strategies that go
beyond static inspection and per-sample anomaly classification.
In this paper, we presented a hybrid detection pipeline that
combines classical supervised learning with temporal sequence
modeling via a TCN.

Our approach begins by training an ML classifier (e.g.,
XGBoost or Random Forest) to generate per-sample risk prob-
abilities from telemetry signals. These probabilities are then
structured as a univariate time series and passed to the TCN,
which captures temporal dynamics indicative of progressive
or stealthy threats. This two-stage architecture is modular,
interpretable, and lightweight—making it suitable for real-time
use on constrained medical hardware.

Experiments on a custom synthetic dataset simulating BD
Alaris™ infusion pump telemetry demonstrated substantial
performance improvements. The XGBoost + TCN configura-
tion achieved an F1-score of 0.6402 and an AUC of 0.8441,
outperforming static baselines by a wide margin. These results
confirm that temporal reasoning over risk trajectories enhances
detection sensitivity, particularly in subtle attack scenarios.

Unlike deep end-to-end pipelines, our method maintains
modularity by decoupling feature-based scoring from temporal
inference. This not only improves interpretability but also
allows for flexible adaptation to heterogeneous IoMT platforms.
In addition, the probabilistic interface between the ML and
TCN layers enables plug-and-play substitution of components,
opening the door to rapid experimentation or domain-specific
tuning.

Future work includes extending the pipeline to multivariate
temporal modeling—Ileveraging raw system metrics in parallel
with risk scores—and exploring alternative temporal architec-
tures such as Transformers. Validating the framework on real-
world hospital telemetry remains an important next step toward

clinical-grade deployment. This also implies addressing chal-
lenges such as data labeling scarcity and strict compliance with
healthcare data protection standards (e.g., HIPAA or GDPR).

In summary, this work introduces a scalable, interpretable,
and effective solution for ransomware detection in IoMT
ecosystems, demonstrating that modeling risk progression over
time can significantly improve threat visibility without compro-
mising deployability.
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