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Abstract—Securing Internet of Medical Things (IoMT) devices
against ransomware requires not only anomaly detection but
also contextual awareness of system integrity. In this paper, we
propose a hybrid detection approach that augments classical
machine learning with behavioral security indicators derived from
a secure heartbeat protocol. These indicators—heartbeat delay,
hash consistency, and token validity—are extracted from a real-
time monitoring system embedded in a private ECG-based IoMT
dataset under normal, anomalous, and ransomware conditions.
While standard metrics such as CPU and RAM usage often fail to
capture stealthy threats, these additional features enable detection
of anomalies that manipulate execution timing, alter critical files,
or originate from unauthorized processes. We evaluate Random
Forest models trained with and without these features: the base
model achieves an AUC of 0.739, which rises to 0.894 with
heartbeat delay, 0.918 with hash consistency, and 0.933 with all
three features combined. This layered security-aware framework
significantly improves the detection of both stealth and brutal
ransomware attacks while preserving system efficiency, offering a
proactive and lightweight solution for IoMT environments.

Index Terms—Internet of Medical Things (IoMT), Ransomware
Detection, Secure Heartbeat, Behavioral Features, Hash Consis-
tency, Token Validation, Random Forest, Stealth Attacks, Brutal
Attacks

I. INTRODUCTION

The Internet of Medical Things (IoMT) has revolutionized
healthcare by enabling real-time monitoring through smart and
interconnected devices such as ECG sensors, pulse oximeters,
and insulin pumps. These technologies improve healthcare
outcomes but introduce critical security challenges. Among
them, ransomware remains one of the most damaging threats, as
shown in early studies that highlighted their ability to encrypt
data and disrupt system operations [1].

Early work in adversarial evasion demonstrated that mal-
ware could bypass machine learning models through subtle,
functionality-preserving transformations [2]. These techniques
enable stealth ransomware to closely mimic benign behav-
ior, complicating its detection. Meanwhile, traditional rule-
based and signature-driven intrusion systems often fail to
identify such attacks in IoMT environments. Their reliance on
static patterns limits responsiveness to emerging or obfuscated
threats—highlighting the need for adaptive, behavior-aware
approaches tailored to real-world medical systems [3].

To address these limitations, we propose a hybrid detection
framework that enriches machine learning with lightweight
behavioral indicators derived from a secure heartbeat protocol.
The extracted features—heartbeat delay, hash consistency, and
token validity—capture timing anomalies, file tampering, and

signature mismatches often seen in ransomware. This aligns
with recent efforts toward secure and efficient anomaly detec-
tion in constrained IoT environments [4].

We evaluate this approach using a private ECG-based IoMT
dataset collected under realistic conditions. It includes system
activity, physiological signals, and behavioral security met-
rics under four operating modes: normal operation, benign
anomalies, and two ransomware strategies (brutal and stealthy).
By comparing models trained with and without the proposed
features, we demonstrate that behavioral indicators offer sub-
stantial gains in detection accuracy and robustness against
stealth techniques.

Our experiments show that a Random Forest model trained
solely on traditional system metrics reaches an AUC of 0.739.
Augmenting the model with heartbeat delay raises the AUC
to 0.894; with delay and hash consistency, to 0.918; and with
all three features, to 0.933. These results confirm behavioral
signals enhance protection in medical devices.

The main contributions of this work are:
• We design a secure heartbeat monitoring protocol tailored

for IoMT devices, generating real-time behavioral features
related to timing, file integrity, and authentication.

• We construct a behavioral feature set including heartbeat
delay, hash consistency, and token validity, integrated into
a lightweight anomaly detection framework.

• We evaluate both standard and augmented Random Forest
classifiers, and explore additional supervised and unsuper-
vised models to assess generalizability.

• We provide an extensive analysis of detection performance
under both brutal and stealth ransomware conditions using
a private ECG-based dataset.

This work contributes to closing the gap between technical de-
tection performance and real-world applicability. By embedding
behavioral awareness into IoMT systems, we not only improve
early detection but also reduce the risk of false alerts, helping
maintain clinical safety and operational continuity.

The remainder of this paper is structured as follows: Sec-
tion II reviews prior research. Section III details our proposed
architecture. Section IV presents our experimental evaluation.
Finally, Section V concludes and discusses future work.

II. RELATED WORK

Recent developments in IoMT security emphasize the need
for robust and context-aware anomaly detection, particularly
to address the increasing sophistication of ransomware attacks.



Research efforts have transitioned from traditional threshold-
based approaches to machine learning (ML) models capable of
handling variability and noise in real-time clinical data streams.

Early approaches in anomaly detection relied heavily on
handcrafted signal features and statistical thresholds. Salem et
al. [5] employed statistical behavior modeling to detect failures
in biomedical sensors, using local extrema and gradient shifts.
While effective in constrained scenarios, such approaches fail
to generalize to stealthy threats mimicking legitimate behavior.
Rule-based schemes likewise suffer from static assumptions and
poor adaptability in dynamic clinical environments [6].

More recent frameworks incorporate machine learning to
better handle time-varying and multivariate data. Iacovazzi and
Raza [7] proposed an ensemble model combining Random For-
est and Isolation Forest, trained on system call graphs extracted
from containerized environments, achieving high detection ac-
curacy with low false positive rates. Liu et al. [8] addressed
the challenge of concept drift in time series by proposing an
unsupervised approach capable of detecting both anomalies
and change points simultaneously. Their method leverages
fluctuation-based features and rate-of-change transformations
to adapt to dynamic environments. These works show the need
for accurate, adaptive models under non-stationary conditions.

Behavioral learning has emerged as a promising alternative
to metric-centric models. KitNET, developed by Mirsky et
al. [9], utilizes an ensemble of autoencoders to learn normal
network behavior and detect anomalies in an unsupervised,
online manner. While effective for identifying traffic devia-
tions, such models miss system-level integrity or authentication
failures—critical when facing ransomware acting below the
application layer.

Several IoMT-specific solutions focus on efficient real-time
monitoring. Almotiri [10] proposed an AI-driven security
framework that combines deep learning and machine learning
techniques to detect advanced malware and ransomware in
Software Defined Networks (SDN) deployed within IoMT
environments. However, lacking behavioral context such as
delays or integrity issues may limit detection of stealthy threats
operating within normal resource bounds.

The notion of integrity verification has been explored in
cyber-physical systems. Kook et al. [11] proposed a lightweight
authentication protocol based on one-way hash functions for
smart grids, designed to detect tampering during communica-
tion. This aligns with our use of hash consistency to detect
silent file changes, especially in stealth ransomware where
traditional metrics stay unchanged.

Authentication-based security is also gaining traction. Xiao
et al. [12] proposed a hardware fingerprint-based authentication
framework (MCU-Token) for IoT devices, generating request-
specific tokens to prevent replay attacks and unauthorized
access. This finding supports our use of token validity to detect
unauthorized system activity and replay attacks in heartbeat
transmissions.

Timing-based anomaly detection, including response time
and heartbeat delay, has been applied in domains like edge
computing and biomedical monitoring. Zhen et al. [13] demon-

strated how analyzing heartbeat intervals can effectively detect
anomalies in ECG signals on edge devices. This approach
inspires our use of heartbeat delay to capture latency footprints
from ransomware disrupting scheduling flows.

In the medical domain, deep learning has also been explored.
Transformer-based architectures, such as the one proposed
by Zia et al. [14], have demonstrated strong capabilities for
detecting complex anomalies in IoT time-series data. Similarly,
Gueriani et al. [15] developed a CNN-LSTM hybrid model
that achieved high accuracy on recent IoT intrusion datasets.
However, such methods need significant resources, limiting
applicability in constrained healthcare settings.

Hybrid frameworks that combine machine learning with
embedded security signals have shown promise in balanc-
ing detection accuracy and efficiency. For instance, Sharma
et al. [16] proposed a blockchain-integrated fog computing
framework combining ensemble learning for real-time intrusion
detection in IoT networks. Though built for industry, the
approach shows growing interest in merging trust, auditability,
and learning—principles we extend to medical systems.

Entropy-based methods have gained traction for detecting
encrypted payloads. Quince et al. [17] proposed a decentral-
ized entropy-driven approach, achieving 97.3% accuracy across
several ransomware families. Shadow et al. [18] introduced
a dynamic entropy framework that monitors real-time fluc-
tuations in system processes, sustaining over 90% accuracy
over time. However, these features may misclassify compressed
or encoded benign files, as shown by McIntosh et al. [19],
who demonstrated how attackers can manipulate entropy values
using Base64 encoding or partial encryption to evade detection,
thus reducing reliability in heterogeneous IoMT environments.

In contrast to these methods, our approach combines the ben-
efits of behavioral anomaly detection with lightweight, security-
focused features embedded directly in the system layer. Rather
than relying solely on resource metrics or entropy, we integrate
heartbeat delay, hash consistency, and token validity—each
designed to capture a specific class of ransomware behavior:
aggressive slowdown, silent modification, and unauthorized
access.

To the best of our knowledge, no prior work has unified
these behavioral integrity checks within a machine learning
pipeline tailored to the dual challenge of stealth and brutal
ransomware in realistic IoMT settings. Furthermore, few studies
report evaluations on private datasets collected from actual
medical workflows, which we consider critical for producing
clinically relevant results.

Our contribution thus extends the state-of-the-art by introduc-
ing a modular and proactive framework that embeds behavioral
awareness into detection systems without compromising on per-
formance or deployability in constrained medical environments.

III. PROPOSED APPROACH

Our proposed framework enhances ransomware detection in
Internet of Medical Things (IoMT) systems by combining tradi-
tional machine learning classifiers with lightweight behavioral
security features derived from a secure heartbeat protocol. As



illustrated in Figure 2, the architecture follows five sequential
stages: (1) data preprocessing, (2) behavioral feature extraction,
(3) dataset enrichment, (4) model training, and (5) real-time
alert generation.

A. Secure Heartbeat Feature Extraction

Our approach introduces three behavioral security indicators
based on signed heartbeat messages periodically transmitted
by the IoMT device. These indicators—Heartbeat Delay, Hash
Consistency, and Token Validity—aim to detect system integrity
violations or communication spoofing that may accompany
ransomware activity.

• Heartbeat Delay (∆t) reflects the time interval between
two consecutive heartbeat messages:

∆t = ti − ti−1 (1)

If ∆t exceeds a predefined threshold (e.g., 6 seconds),
it may suggest abnormal system latency induced by ran-
somware overload.

• Hash Consistency (hc) evaluates the integrity of a critical
system file by comparing its current hash to a reference:

hc =

{
1, if Hreceived = Hexpected

0, otherwise
(2)

where H(·) represents the SHA-256 hash of the file. A
mismatch suggests file encryption or unauthorized tam-
pering.

• Token Validity (τv) verifies message authenticity using an
HMAC-SHA256 signature with a shared secret key k:

τv =

{
1, if HMAC(k,m) = Tokenreceived

0, otherwise
(3)

where m is the message payload, typically a concatenation
of timestamp and hash. Invalid tokens indicate possible
spoofed messages or malicious code injection.

Example: Suppose the monitored file /etc/init.conf orig-
inally has a reference hash Hexpected = e3b0...c442. If a
heartbeat reports a current hash Hreceived that differs due to
encryption or tampering, then hash_consistency is set
to 0. Similarly, if the message timestamp deviates from the
expected 3-second interval, heartbeat_delay increases. If
the HMAC signature fails verification using the shared key,
token_validity is also set to 0.

This simple logic allows the system to flag anomalies in
timing, integrity, or authenticity without requiring deep packet
inspection or heavy computation.

These features are computed in real-time and appended to
each observation in the monitoring dataset. When integrated
into a learning model, they substantially enhance detection per-
formance, especially for stealthy or system-level ransomware
behaviors.

Figure 1 illustrates which attack classes are primarily cap-
tured by each feature.

Heartbeat
Delay

Hash
Consistency

Token
Validity

Brutal
Ransomware

Stealth
Ransomware

Unauthorized
Process

Fig. 1: Each behavioral feature contributes to detecting a
specific class of ransomware attack.

B. Dataset Enrichment and Preprocessing

Once extracted, the three heartbeat-based behavioral features
are merged with classical IoMT metrics such as CPU usage,
RAM consumption, disk I/O, and SpO2. This combination
creates a unified feature space that captures both system per-
formance and security integrity.

To prepare the dataset for temporal modeling, we apply the
following preprocessing steps:

• Min-max normalization, which rescales all features to a
common range, improving model convergence;

• Timestamp alignment, ensuring that data from all sensors
and heartbeat messages are synchronized;

• Rolling window statistics (e.g., mean and standard de-
viation), computed over short time intervals to capture
dynamic fluctuations and short-term trends.

These operations transform the raw input into structured,
time-aware sequences suitable for ransomware detection. They
also help highlight subtle changes that may indicate stealthy or
progressive attacks.

C. Model Training: Supervised and Unsupervised

We evaluated a range of supervised and unsupervised models
commonly used for anomaly-rich and imbalanced datasets:

• Random Forest (RF): supervised ensemble classifier for
structured data.

• Gradient Boosting (GB): supervised boosting method cap-
turing nonlinear feature interactions.

• Logistic Regression (LR): supervised linear model with
probabilistic outputs.

• Isolation Forest (IF): unsupervised anomaly detector using
recursive partitioning.

• Local Outlier Factor (LOF): unsupervised density-based
local anomaly detector.

• One-Class SVM (OCSVM): unsupervised model defining
a boundary around normal data.

All models were trained on a stratified 80/20 split of a pri-
vate ECG-based IoMT dataset. Heartbeat-based features were
included in all models to assess their impact on detection
performance.

D. Real-Time Alerting Mechanism

Rather than using continuous scoring, our system triggers
an alert as soon as a sample is flagged with high confidence.



This enables immediate actions such as isolation, logging, or
backup—minimizing risk before spread.

This simple threshold-based logic ensures fast response with
minimal complexity, ideal for clinical IoMT settings.

While inference and alerting are performed in real time,
model training remains offline. This allows for robust learning
using historical data while maintaining low-latency detection
during deployment. Periodic retraining can be scheduled to
reflect changes in device behavior or the emergence of novel
threats.

Figure 2 shows the full pipeline from telemetry to alert
generation.

Fig. 2: Proposed detection pipeline combining classical system
metrics with behavioral heartbeat integrity features.

This modular framework is suitable for both edge-level and
gateway-level deployments. It improves ransomware detection
precision and recall by extending traditional monitoring with
behavioral integrity verification. Section IV provides an in-
depth evaluation on our private dataset under realistic condi-
tions.

IV. EXPERIMENTAL RESULTS

A. Dataset and Experimental Setup

We conducted our evaluation using a proprietary IoMT
dataset originally derived from ECG monitoring devices.
The dataset contains 60,000 time-series samples captured
at 3-second intervals, combining physiological signals (e.g.,
BPM, HRV) with system telemetry (e.g., CPU, RAM,
Disk I/O, Network). To improve ransomware detection,
three behavioral integrity indicators were appended to each
sample: heartbeat_delay, hash_consistency, and
token_validity, derived from a secure heartbeat protocol.
This fusion creates a hybrid telemetry space representing both
performance and security behavior.

The dataset includes four distinct types of events:

• Normal behavior (48,274 samples) — regular patient mon-
itoring without abnormal activity.

• Benign anomalies (4,791 samples) — events such as
software updates, sensor recalibrations, and network fluc-
tuations. These resemble ransomware behavior in disk or
CPU metrics but are non-malicious.

• Stealth ransomware (3,314 samples) — slow, disguised file
encryption with minimal impact on system metrics.

• Brutal ransomware (3,621 samples) — rapid and aggres-
sive encryption, visibly impacting resource usage and
timing.

To clarify the nature of benign anomalies, Table I provides
examples of common non-malicious disruptions present in the
dataset.

TABLE I: Examples of Benign Anomalies

Anomaly Type Description
Sensor Recalibration Temporary data spike during manual adjustment
Software Update Increased CPU/disk from update processes
Network Dropout Short-term disconnection and reconnection
Backup Event Legitimate high disk activity from snapshot

The class distribution is illustrated in Figure 3, showing
a strong imbalance, with 80.5% normal samples and only
6% stealth ransomware. All models were trained using 80/20
stratified splits and evaluated with 5-fold cross-validation in
scikit-learn.

Fig. 3: Distribution of event types across the dataset.

B. Feature Overview
The feature space blends physiological, system-level, and be-

havioral dimensions. Table II presents a subset of key indicators
used during training and evaluation.

TABLE II: Overview of Feature Space (selected examples)

Feature Description
BPM Heart rate monitoring signal
HRV (ms) Heart rate variability
CPU Usage (%) System load
RAM Usage (MB) Memory pressure
Disk Activity (MB/s) Ransomware activity indicator
Network Sent/Received (kB/s) Communication patterns
heartbeat delay Irregularity in heartbeat timestamp inter-

vals
hash consistency Integrity of critical system files
token validity Message authenticity check



To better understand feature behavior, we analyzed Disk
Activity (MB/s) across the three main event types (Nor-
mal, Anomaly, Ransomware). As shown in Figure 4, ran-
somware events tend to have higher disk usage than normal
activity, but significant overlap with anomalies makes this
feature unreliable on its own.

Fig. 4: Boxplot of disk activity across event types.

This observation highlights the need for behavioral fea-
tures: since benign anomalies (e.g., software patches or back-
ups) may spike disk usage without indicating ransomware,
relying solely on classical metrics risks high false posi-
tives. Behavioral indicators such as hash_consistency and
token_validity capture integrity violations and message
authenticity failures that help disambiguate these cases.

C. Threat Model and Assumptions
Our detection framework assumes a threat landscape involv-

ing both stealthy and overt ransomware behaviors. The attacker
is assumed to have gained sufficient access to the IoMT device
to execute malicious code, encrypt or tamper with system files,
or manipulate device scheduling. Two attack categories are
considered:

• Brutal ransomware: rapidly encrypts files or overloads
system resources, producing detectable anomalies such as
CPU spikes, disk I/O bursts, or heartbeat delay.

• Stealth ransomware: operates at low intensity over ex-
tended periods, mimicking benign anomalies and making
detection more difficult without integrity checks or authen-
tication mechanisms.

The model assumes that the secure heartbeat mech-
anism—responsible for transmitting timestamped, signed
telemetry with file hashes—is trustworthy. Specifically:

• The attacker cannot access the HMAC signing key used
to validate heartbeat tokens.

• The attacker cannot spoof or forge valid heartbeat mes-
sages without detection.

• The baseline hash of monitored files is known and securely
stored.

The system operates in a passive detection mode. It does not
attempt to neutralize or block malicious activity, but rather de-
tects and flags suspicious behavior for downstream mitigation.

Real-time response mechanisms (e.g., isolation or backup) are
implemented as a separate containment layer once an alert is
triggered.

D. Detection Performance Overview
We evaluated the detection capability of the Ran-

dom Forest model in four configurations: without any
heartbeat features, with only heartbeat_delay, with
both heartbeat_delay and hash_consistency, and
with all three behavioral features (heartbeat_delay,
hash_consistency, token_validity).

Figure 5 shows the ROC curve of the baseline model trained
without any behavioral security indicators. Figure 6 illustrates
the complete progression in detection performance as each
heartbeat feature is successively added.

Fig. 5: ROC curve of the baseline Random Forest model
without behavioral features (AUC = 0.739).

Fig. 6: Progressive impact of each heartbeat-based feature on
Random Forest ROC curve.

As seen in Figure 5, the baseline model performs poorly in
detecting ransomware, with an AUC of 0.739 and a very low
recall (5.1%). However, as shown in Figure 6, detection perfor-
mance improves substantially with each added security feature.
The final model—including all heartbeat features—achieves an
AUC of 0.933, confirming the effectiveness of this layered
behavioral strategy.



The ROC (Receiver Operating Characteristic) curve plots
the True Positive Rate (Recall) against the False Positive Rate
across varying decision thresholds. A perfect model reaches
the top-left corner (TPR = 1, FPR = 0), while random guessing
yields a diagonal line with AUC = 0.5. As visible in Figure 6,
each added behavioral feature shifts the curve closer to ideal
separation. This progressive improvement confirms their rele-
vance in distinguishing ransomware from benign activity under
various thresholds.

E. Impact of Behavioral Features

We quantitatively evaluated the impact of each heartbeat-
based feature by progressively adding them to the feature space
and observing the evolution of detection performance. The
model used for all evaluations was Random Forest, trained on
an 80/20 stratified split with 5-fold cross-validation.

The performance was assessed using four main metrics:
Precision, Recall, F1-score, and Area Under the ROC Curve
(AUC), defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 = 2× Precision × Recall
Precision + Recall

AUC =
∫ 1

0
ROC(t)dt

To interpret these metrics, we recall the definitions of core
classification outcomes: true positives (TP) are correctly identi-
fied ransomware samples; false negatives (FN) are ransomware
samples missed by the model; false positives (FP) are benign
samples wrongly flagged as ransomware. Precision reflects how
many predicted ransomware samples are truly malicious, while
recall measures the proportion of actual ransomware detected.
The F1-score balances both. Accuracy is the overall percentage
of correct predictions, but may be misleading in imbalanced
datasets where normal events dominate.

Table III summarizes how performance improves as we
integrate each feature:

The baseline model, without any heartbeat features, performs
poorly in detecting ransomware. Despite a decent overall ac-
curacy, its recall for ransomware is only 5.1%, indicating that
most attacks go undetected. The AUC of 0.739 confirms its
limited ability to discriminate ransomware from benign activity.

Adding heartbeat_delay, derived from temporal irreg-
ularities in secured heartbeats, yields a major breakthrough. It
raises the recall to 52.6% and boosts AUC to 0.894, capturing
early-stage behavioral drift.

The addition of hash_consistency, which validates the
stability of critical system files, further improves detection ro-
bustness. It increases recall to 65.5% and the F1-score to 0.774,
indicating better balance between sensitivity and specificity.

Finally, including token_validity, which ensures the
authenticity of transmitted data, completes the feature set. The
model achieves a recall of 74.6%, with an AUC of 0.933
and an F1-score of 0.839 — demonstrating strong and reliable
performance across all ransomware profiles.

Each behavioral feature targets a distinct ransomware
trait: heartbeat_delay detects abnormal timing behav-
iors (especially in brutal attacks), hash_consistency
captures subtle integrity drifts in stealth scenarios, and
token_validity validates the authenticity of messages,
often tampered with by sophisticated threats. Together, they
form a complementary stack for robust detection.

F. Model Comparison

To assess the effectiveness of the proposed behavioral fea-
tures, we evaluated three supervised classifiers under two con-
figurations: a baseline using only traditional system and sensor
metrics, and a full feature set including the secure heartbeat
indicators.

Table IV summarizes the Area Under the Curve (AUC)
scores for each model under both settings.

TABLE IV: Comparison of Supervised Models (AUC)

Model Baseline (AUC) Full (AUC)
Random Forest (RF) 0.739 0.933
Gradient Boosting (GB) 0.722 0.901
Logistic Regression (LR) 0.608 0.770

All classifiers showed a substantial improvement in AUC
when enriched with heartbeat-based features, confirming the
added value of behavioral indicators. Among them, the Random
Forest consistently achieved the highest detection performance
in both configurations.

Given its superior accuracy, robustness, and ability to capture
non-linear feature interactions, Random Forest was selected as
the primary model for the remaining experiments.

G. Impact Analysis

Figure 7 shows the feature importance scores from the
Random Forest model trained with all features.

Fig. 7: Feature Importance - Random Forest (with heartbeat
features)

The top three features (heartbeat_delay,
hash_consistency, and token_validity) highlight
the impact of behavioral security indicators. These features,
extracted from a secure heartbeat mechanism, proved more



TABLE III: Random Forest Performance as Heartbeat Features Are Added

Features AUC Precision (Ransom) Recall (Ransom) F1-score
Without heartbeat features 0.739 0.655 0.051 0.095
+ heartbeat_delay 0.894 0.932 0.526 0.673
+ hash_consistency 0.918 0.946 0.655 0.774
+ token_validity (full) 0.933 0.958 0.746 0.839

discriminative than traditional system metrics. Lower-
ranked features such as BPM and HRV (ms) confirm
that physiological signals were less relevant for detecting
ransomware activity.

H. Stealth vs. Brutal Detection

To better understand the behavioral features’ contribution
across attack types, we analyzed the AUC separately for brutal
and stealth ransomware variants using Random Forest. Results
are shown in Table V.

TABLE V: Detection AUC by Ransomware Type (Random
Forest)

Feature Configuration Brutal AUC Stealth AUC
Without heartbeat features 0.834 0.646
+ heartbeat_delay 0.924 0.681
+ hash_consistency 0.935 0.742
+ token_validity (full) 0.957 0.823

Observations:
• heartbeat_delay significantly improved brutal ran-

somware detection by capturing anomalies in system ac-
tivity timing, raising AUC from 0.834 to 0.924.

• hash_consistency provided early signs of stealth
activity through subtle integrity changes in monitored files,
leading to a notable increase in stealth AUC (from 0.681
to 0.742).

• token_validity further strengthened stealth detection
by modeling message authenticity failures common in
advanced attacks, raising stealth AUC to 0.823.

Overall, the full behavioral stack enhanced both detection
fronts, with brutal attacks reaching 0.957 AUC and stealth
variants showing the strongest relative gain—improving by
+27.7% from baseline—while maintaining a low false negative
rate.

Compared to existing intrusion detection approaches such
as Kitsune [9], which uses the KitNET algorithm, and CNN-
LSTM models [15], our method offers a lightweight and inter-
pretable alternative tailored to real-time IoMT environments.
Kitsune performs online anomaly detection at the network
level using an ensemble of autoencoders and runs efficiently
even on devices like Raspberry Pi. However, it lacks visibility
into file integrity and system-level timing behaviors. CNN-
LSTM approaches, while achieving high accuracy (98.57% F1-
score on IoT datasets), rely on deep supervised architectures
that are computationally intensive and less suited for con-
strained medical devices. In contrast, our approach integrates
low-cost behavioral indicators such as heartbeat_delay,
hash_consistency, and token_validity, enabling ro-

bust ransomware detection—including stealth attacks—without
incurring high computational overhead.

I. Real-Time Response Strategy

To complement detection, we implemented a reactive re-
sponse mechanism suited to clinical IoMT environments. When
the model predicts a ransomware probability above a predefined
threshold (e.g., 90%), it triggers a lightweight containment
protocol to ensure high confidence while preserving system
stability.

The response includes:
• Isolating the affected device from the network to prevent

lateral spread;
• Notifying clinical staff via dashboard or secure messaging;
• Initiating a local backup or snapshot to preserve patient

data.
These actions are managed by a lightweight agent at the

gateway level, avoiding firmware changes and ensuring compat-
ibility with existing infrastructure. Inference time remains under
10 ms, enabling rapid decisions even on constrained hardware.

To prevent alert fatigue during extended attacks, a cooldown
policy suppresses repeated alerts for the same device. While
the system does not actively block attacks, it enables fast
containment with minimal disruption to clinical workflows.

J. Deployment Considerations

The proposed framework is designed for deployment at the
gateway level, where telemetry streams are collected and pro-
cessed before reaching centralized infrastructure. This architec-
ture eliminates the need for firmware modifications on medical
devices, while still enabling real-time anomaly detection.

In high-risk environments, heartbeat validation can optionally
be embedded at the device level to enhance trust guarantees. All
models are inference-ready and compatible with edge hardware
supporting Python or other lightweight runtime environments.

K. Limitations and Future Directions

While the proposed framework achieves strong detection
accuracy and real-time alerting, several limitations remain.
First, it treats all ransomware types as a single class, which
limits its forensic and attribution capabilities.

Second, the model is trained offline and may degrade over
time in the presence of concept drift or emerging threats, unless
adaptive learning is introduced.

Third, false positives may arise during legitimate
updates or maintenance operations, particularly when
hash_consistency or token_validity deviate from
expected patterns. Context-aware whitelisting or dynamic
baselines could mitigate this issue.



Future work will explore real-time model adaptation, per-
device learning, and finer-grained classification of ransomware
variants.

L. Key Findings

• AUC Improvement: Random Forest AUC improved from
0.739 (baseline) to 0.933 with full behavioral features.

• Stealth Detection: False negatives were reduced by over
70%, particularly for stealth attacks, due to the addition
of heartbeat-based features.

• Detection Quality: The final model achieved strong ran-
somware classification performance, as confirmed by F1-
score and balanced precision-recall metrics.

• Real-Time Readiness: The detection system enables ac-
tionable, low-latency responses suitable for clinical IoMT
environments.

V. CONCLUSION

This paper introduced a lightweight and security-aware de-
tection framework for IoMT ransomware, integrating traditional
system metrics with behavioral indicators extracted from a
secure heartbeat protocol. These features—heartbeat delay,
hash consistency, and token validity—enabled the model to
capture timing anomalies, file integrity breaches, and authen-
tication failures associated with both stealthy and aggressive
ransomware behaviors.

Our experimental results demonstrated that the Random
Forest classifier, when enriched with heartbeat-based features,
improved its AUC from 0.739 to 0.933 and significantly re-
duced false negatives, especially in stealth scenarios. Feature
importance analysis further confirmed that behavioral features
outperformed standard metrics in ransomware classification.
The framework also supports low-latency alerts and response
strategies, essential for medical environments.

This design aligns well with the operational constraints
of modern healthcare environments, where detection speed,
interpretability, and ease of deployment are often more critical
than theoretical model complexity.

While the experiments focused on ECG-based telemetry,
the proposed approach is transferable to other critical IoT
infrastructures—such as industrial control systems or smart
energy platforms—where behavioral drift and integrity viola-
tions are equally relevant. The framework could also serve as a
modular layer within a larger intrusion detection system (IDS),
complementing signature-based and network-level defenses.

For future work, deeper integration of temporal learning
models such as LSTMs or hybrid CNN-LSTM architec-
tures [20] could improve early-stage detection, as long as la-
tency and computational constraints remain satisfied. Addition-
ally, adopting federated learning or edge-native inference [21]
would enhance scalability and data privacy, particularly in
multi-device deployments. Finally, we plan to explore more
advanced real-time response strategies triggered by the model,
including adaptive device isolation, dynamic threat escalation,
and rollback of encrypted data.
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